Submit Manuscript  

Article Details


iMethylK-PseAAC: Improving Accuracy of Lysine Methylation Sites Identification by Incorporating Statistical Moments and Position Relative Features into General PseAAC via Chou’s 5-Steps Rule

[ Vol. 20 , Issue. 4 ]

Author(s):

Sarah Ilyas, Waqar Hussain, Adeel Ashraf , Yaser Daanial Khan*, Sher Afzal Khan and Kuo- Chen Chou   Pages 275 - 292 ( 18 )

Abstract:


Background: Methylation is one of the most important post-translational modifications in the human body which usually arises on lysine among the most intensely modified residues. It performs a dynamic role in numerous biological procedures, such as regulation of gene expression, regulation of protein function and RNA processing. Therefore, to identify lysine methylation sites is an important challenge as some experimental procedures are time-consuming.

Objective: Herein, we propose a computational predictor named iMethylK-PseAAC to identify lysine methylation sites.

Methods: Firstly, we constructed feature vectors based on PseAAC using position and composition relative features and statistical moments. A neural network is trained based on the extracted features. The performance of the proposed method is then validated using cross-validation and jackknife testing.

Results: The objective evaluation of the predictor showed accuracy of 96.7% for self-consistency, 91.61% for 10-fold cross-validation and 93.42% for jackknife testing.

Conclusion: It is concluded that iMethylK-PseAAC outperforms the counterparts to identify lysine methylation sites such as iMethyl-PseACC, BPB-PPMS and PMeS.

Keywords:

Methylation, lysine methylation, PseAAC, statistical moments, 5-steps rule, prediction.

Affiliation:

Department of Computer Science, School of Systems and Technology, University of Management and Technology, P.O. Box 10033, C-II, Johar Town, Lahore 54770, Department of Computer Science, School of Systems and Technology, University of Management and Technology, P.O. Box 10033, C-II, Johar Town, Lahore 54770, Department of Computer Science, School of Systems and Technology, University of Management and Technology, P.O. Box 10033, C-II, Johar Town, Lahore 54770, Department of Computer Science, School of Systems and Technology, University of Management and Technology, P.O. Box 10033, C-II, Johar Town, Lahore 54770, Faculty of Computing and Information Technology in Rabigh, Jeddah, 21577, Gordon Life Science Institute, Boston, MA 02478



Read Full-Text article