Submit Manuscript  

Article Details


iSulfoTyr-PseAAC: Identify Tyrosine Sulfation Sites by Incorporating Statistical Moments via Chou’s 5-steps Rule and Pseudo Components

[ Vol. 20 , Issue. 4 ]

Author(s):

Omar Barukab, Yaser Daanial Khan, Sher Afzal Khan* and Kuo-Chen Chou   Pages 306 - 320 ( 15 )

Abstract:


Background: The amino acid residues, in protein, undergo post-translation modification (PTM) during protein synthesis, a process of chemical and physical change in an amino acid that in turn alters behavioral properties of proteins. Tyrosine sulfation is a ubiquitous posttranslational modification which is known to be associated with regulation of various biological functions and pathological processes. Thus its identification is necessary to understand its mechanism. Experimental determination through site-directed mutagenesis and high throughput mass spectrometry is a costly and time taking process, thus, the reliable computational model is required for identification of sulfotyrosine sites.

Methodology: In this paper, we present a computational model for the prediction of the sulfotyrosine sites named iSulfoTyr-PseAAC in which feature vectors are constructed using statistical moments of protein amino acid sequences and various position/composition relative features. These features are incorporated into PseAAC. The model is validated by jackknife, cross-validation, self-consistency and independent testing.

Results: Accuracy determined through validation was 93.93% for jackknife test, 95.16% for crossvalidation, 94.3% for self-consistency and 94.3% for independent testing.

Conclusion: The proposed model has better performance as compared to the existing predictors, however, the accuracy can be improved further, in future, due to increasing number of sulfotyrosine sites in proteins.

Keywords:

Sulfation, sulfotyrosine, statistical moments, PseAAC, 5-step rule, pseudo components.

Affiliation:

Department of Information Technology, Faculty of Computing and Information Technology in Rabigh, King Abdulaziz University, P.O. Box 344, Rabigh, 21911, Department of Computer Science, School of Systems and Technology, University of Management and Technology, P.O. Box 10033, C-II, Johar Town, Lahore 54770, Department of Information Technology, Faculty of Computing and Information Technology in Rabigh, King Abdulaziz University, P.O. Box 344, Rabigh, 21911, Gordon Life Science Institute, Boston, MA 02478

Graphical Abstract:



Read Full-Text article