Submit Manuscript  

Article Details


Quantification of Naphthalene Dioxygenase (NahAC) and Catechol Dioxygenase (C23O) Catabolic Genes Produced by Phenanthrene-Degrading Pseudomonas fluorescens AH-40

[ Vol. 21 , Issue. 2 ]

Author(s):

Asmaa M.M. Mawad , Wael S. Abdel-Mageed and Abd E.-L. Hesham*   Pages 111 - 118 ( 8 )

Abstract:


Background: Petroleum polycyclic aromatic hydrocarbons (PAHs) are known to be toxic and carcinogenic for humans and their contamination of soils and water is of great environmental concern. Identification of the key microorganisms that play a role in pollutant degradation processes is relevant to the development of optimal in situ bioremediation strategies.

Objective: Detection of the ability of Pseudomonas fluorescens AH-40 to consume phenanthrene as a sole carbon source and determining the variation in the concentration of both nahAC and C23O catabolic genes during 15 days of the incubation period.

Methods: In the current study, a bacterial strain AH-40 was isolated from crude oil polluted soil by enrichment technique in mineral basal salts (MBS) medium supplemented with phenanthrene (PAH) as a sole carbon and energy source. The isolated strain was genetically identified based on 16S rDNA sequence analysis. The degradation of PAHs by this strain was confirmed by HPLC analysis. The detection and quantification of naphthalene dioxygenase (nahAc) and catechol 2,3-dioxygenase (C23O) genes, which play a critical role during the mineralization of PAHs in the liquid bacterial culture were achieved by quantitative PCR.

Results: Strain AH-40 was identified as pseudomonas fluorescens. It degraded 97% of 150 mg phenanthrene L-1 within 15 days, which is faster than previously reported pure cultures. The copy numbers of chromosomal encoding catabolic genes nahAc and C23O increased during the process of phenanthrene degradation.

Conclusion: nahAc and C23O genes are the main marker genes for phenanthrene degradation by strain AH-40. P. fluorescence AH-40 could be recommended for bioremediation of phenanthrene contaminated site.

Keywords:

Bacteria, catabolic genes, isolation, PAHs pollutant, 16S rDNA, Pseudomonas fluorescens.

Affiliation:

Biology Department, College of Science, Taibah University, Al-Madinah Al-Munawwarah, Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef 62511, Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef 62511

Graphical Abstract:



Read Full-Text article