Submit Manuscript  

Article Details

Crosstalk Between DNA and Histones: Tet’s New Role in Embryonic Stem Cells

[ Vol. 13 , Issue. 8 ]


Xinyi Sui, Colles Price, Zejuan Li and Jianjun Chen   Pages 603 - 608 ( 6 )


Embryonic stem (ES) cells are characterized by the expression of an extensive and interconnected network of pluripotency factors which are downregulated in specialized cells. Epigenetic mechanisms, including DNA methylation and histone modifications, are also important in maintaining this pluripotency program in ES cells and in guiding correct differentiation of the developing embryo. Methylation of the cytosine base of DNA blocks gene expression in all cell types and further modifications of methylated cytosine have recently been discovered. These new modifications, putative intermediates in a pathway to erase DNA methylation marks, are catalyzed by the ten-eleven translocation (Tet) proteins, specifically by Tet1 and Tet2 in ES cells. Surprisingly, Tet1 shows repressive along with active effects on gene expression depending on its distribution throughout the genome and co-localization with Polycomb Repressive Complex 2 (PRC2). PRC2 di- and tri-methylates lysine 27 of histone 3 (H3K27me2/3 activity), marking genes for repression. In ES cells, almost all gene loci containing the repressive H3K27me3 modification also bear the active H3K4me3 modification, creating “bivalent domains” which mark important developmental regulators for timely activation. Incorporation of Tet1 into the bivalent domain paradigm is a new and exciting development in the epigenetics field, and the ramifications of this novel crosstalk between DNA and histone modifications need to be further investigated. This knowledge would aid reprogramming of specialized cells back into pluripotent stem cells and advance understanding of epigenetic perturbations in cancer.


Tet, ES cells, Polycomb repressive complex, DNA modification, Histone modification, Epigenetics, 5mC, 5hmC, pluripotency, H3K27me3.


Section of Hematology/ Oncology, Department of Medicine, University of Chicago, 900 E. 57th Street, Room 7134, Chicago, IL 60637, USA.

Read Full-Text article